
1 © 2005 IBM Corporation

The Cell Processor
Architecture & Issues



2 © 2005 IBM Corporation

Agenda

� Cell Processor Overview

� Programming the Cell Processor

� Concluding Remarks



3 © 2005 IBM Corporation

Cell Highlights

� Observed clock speed
►> 4 GHz

� Peak performance (single precision)
►> 256 GFlops

� Peak performance (double precision)
►>26 GFlops

� Area 221 mm2
� Technology 90nm SOI
� Total # of transistors 234M



4 © 2005 IBM Corporation

Cell Chip Block Diagram

PXU

EIB (up to 96 Bytes/cycle)

SXU

LS

SXU

LSLS

SXU

LSLS

SXU

LS

Dual XDRTM FlexIOTM

LS

SXU

LS

SXU SXU SXU

BICMICL2

L1

SMF SMFSMFSMF SMFSMF SMF SMF

PPE

SPESPU



5 © 2005 IBM Corporation

SPE Data Flow

• Register File
• 128 entries
• 6 read ports and 2 write ports
•� Unified float/integer

• Forwarding Unit
•� 6 Read ports for functional units
•� 2 Read ports drive register file write ports
• � Orders results from function units into program order



6 © 2005 IBM Corporation

Issue 

•� In-order Issue
•� Dual issue requires alignment according to type
•� Instruction Swap forces single issue
•� 7 units & 2 pipes 



7 © 2005 IBM Corporation

SPE ISA Summary

•� 32b fixed length instruction formats.
•� Up to 3 sources and 1 target register
•� Instructions operate on 128b data

• 16 x 8b , 8 x 16b, 4 x 32b , 2 x 64b

•� 4-way sp, 2-way dp multiply-add
•� Integer arithmetic, logicals & compares
•� Shifts / Rotates of words, quad words
•� Loads/Stores, Branches
•� Channel I/O
•� Media instructions



8 © 2005 IBM Corporation

Media Instructions

•� Avg bytes
•� Abs differences bytes
•� Sum bytes in words
•� Bit-wise select
•� Shuffle bytes
•� Count leading zeros in words
•� Pop count in bytes
•� Gather bits from bytes, short, words



9 © 2005 IBM Corporation

Programming
Cell



10 © 2005 IBM Corporation

Prototype SPE Compiler Optimizations

� Sub-word Optimizations:
► Sub-word operations run natively on the SPE

► 2-way 64b, 4-way 32b, 8-way 16b, 16-way 8b (ops per cycle)

� Branch Optimizations:
► If Conversion using the Select instruction

► Miss prediction penalty avoidance using Branch Hint Instruction

– Via compiler analysis, profiler feedback, and/or user directive
� Instruction Scheduling Optimizations:

► Maximizing dual issue opportunities

► Avoiding fetch starvation using explicit instruction pre-fetch

� Automatic ‘SIMDIZATION’
► Extract SIMD parallelism across loop iterations

► Identify alignment requirements for SIMD operations

► Generate code with embedded shuffle instructions to achieve alignment 



11 © 2005 IBM Corporation

Prototype Single Source Cell Compiler

� High Level Requirements
► Partition application across multiple SPE’s

► Orchestrate Code and Data transfers via DMA 

� User Directed Parallelization
► OpenMP pragmas guide parallelization decisions.

► Compilation Steps:

– Outline parallel code sections
– Apply machine independent optimizations
– Generate optimized code for PPE and SPE’s

► A Master Thread runs on the PPE processor.

– Orchestrates all work sharing constructs



12 © 2005 IBM Corporation

Prototype Single Source Cell Compiler (contd)

� Single Shared Memory Abstraction
► Programmers view is a single addressable memory

► SPE program and data reside in system memory. Compiler automatically 
manages data movement between system memory and a compiler controlled 
‘Software Cache’ in SPE Local Store. 

► Performance optimizations:

– Local, stack allocated variables in the Local Store
– Program restructuring to allow multiple elements to be fetched together

● Loop restructuring transformations such as blocking and interchange
– Software pipeline blocked loops

● Overlap data movement and computation
► Code Partitioning

– Enables program code segment sizes larger than Local Store.
– Integrated with the data software cache

● Home location of code partitions is system memory
● Partition Manager loads partitions from system memory to Local Store

♦ Normally during an inter-partition function call or return



13 © 2005 IBM Corporation

DGEMM
C = ✍ A B + ✎ C

� Where
► A, B & C are double precision, NxN real matrices

► � & � are double precision reals

� Single Cell Processor
► Partition C matrix over 8 SPE’s

► Tile each SPE’s portion into LS sized pieces

– Each LS must hold at least 3 tiles at a time (A, B, C)
– More tiles if multi-buffered
– Example tiles: 32x32 (8KB) or 64x64 (32KB)

► Tile the LS pieces in register file sized pieces

– 128, 16B SIMD registers per SPE
– Example tile: 4x8 elements = 16 registers

� Compute bound: N3 multiplies vs 3N2 loads + N2 stores



14 © 2005 IBM Corporation

Partitioning and Tiling

SPE 7SPE 6

SPE 5SPE 4

SPE 3SPE 2

SPE 1SPE 0

� Partition C matrix among SPE’s

� Tile each SPE portion of C

C                          A                    B                         C

= � x                       + �

� Choose blue tile size to fit in local store (256KB)



15 © 2005 IBM Corporation

SPE Pseudo-Code: Single Buffer

For (i=0; i < N; ++i)
{     For (j=0; j < N; ++j)

{      Issue_DMA (tile C(i,j) from MS to LS);
For (k=0; k < N; ++k)
{ Issue_DMA (tile A(i,k) from MS to LS);

Issue_DMA (tile B(k,j) from MS to LS);
WaitAll ();
For (Each sub-tile of tile C(i,j))
{     For (Each sub-tile of tile A(i,k) and B(k,j))

{      Load sub-tiles of A, B, and C into registers;
MulAdd sub-tiles into result registers;
Store result registers back to sub-tile of C(i,j) in LS;

}
Clean-up partial sums;

}
}
Issue_DMA (tile C(i,j) from LS to MS);

} 
}



16 © 2005 IBM Corporation

SPE Pseudo-Code: Double Buffer
For (i=0; i < N; ++i)
{     For (j=0; j < N; ++j)

{      Issue_DMA (InitialGroup, tile C(i,j) from MS to LS);
Issue_DMA (CurrentGroup, tile A(i,0) from MS to LS);
Issue_DMA (CurrentGroup, tile B(0,j) from MS to LS);
For (k=1; k < N; k++)
{ if (k+1 < N)

{ Issue_DMA (NextGroup, tile A(i,k) from MS to LS);
Issue_DMA (NextGroup, tile B(k,j) from MS to LS);

}
if (k == 1) WaitAll (InitialGroup);
WaitAll (CurrentGroup);
For (Each sub-tile of tile C(i,j))
{     For (Each sub-tile of tile A(i,k-1) and B(k-1,j))

{      Load sub-tiles of A, B, and C into registers;
MulAdd sub-tiles into result registers;
Store result registers back to sub-tile of C(i,j) in LS;

}
Clean-up partial sums;

}
Temp = CurrentGroup;
CurrentGroup = NextGroup;
NextGroup = Temp;

}
Issue_DMA (InitialGroup, tile C(i,j) from LS to MS);

} 
}



17 © 2005 IBM Corporation

Register file tiling
Tile from A matrix                            Tile from B matrix

� SIMD Register – 2 DP floats
� Tile A is 8x4
� Tile B is 4x8
� Matrix B must be stored accordingly or reorganized at load time
� Each register pair will be muladd’ed to a temp register
� Temp registers summed after all register file tiles processed
� Gives one register with two partial sums

3 4 5 6 87
2

1

6

5

8

7

4

3

1 2



18 © 2005 IBM Corporation

Partial Sum Clean-Up
� Each sum results in single register with two partial sums
� These must be combined and merged with C
� We do this two sums at a time:

X2X1 Y2Y1

Y1+Y2X1+X2

Y1X1 Y2X2

�(Y1+Y2 )�(X1+X2)

�(Y1+Y2 ) + � C2�(X1+X2) + � C1

After partial sum:

Two shuffles:

Add:

Mul:

MulAdd:



19 © 2005 IBM Corporation

HPCC Random Access Benchmark (GUPS)
� Measures random memory update throughput

� Algorithm
► Initialize large table of 64-bit elements in main memory

► Generate 64-bit pseudo-random number

► Use random number to generate table address

► Update corresponding address using random number

► Iterate…

� Focus:  Using SIMD to generate random numbers Rj

Rj = (Rj-1<<1) ^ [ (Rj-1 < 0) ? 7 : 0 ]

► Use highest order bit to select XOR mask: 7 or 0

► Shift number left 1 bit and XOR with mask



20 © 2005 IBM Corporation

HPCC Random Number Generation

� Naive approach
► 128b register, 64b elements  � 2-way SIMD

� Better:  Process 64 random numbers in 32 registers
► No 64b rotate so…

► 32 integer rotate left 1 bit 

– Bottom bits of the 2 words in each double-word now reversed
► 16 shuffles & 8 or’s

– Gather the bottom bytes of all words into 8 registers 
► 8 rotate shorts by 8 bits to swap all byte pairs

– Least significant bits now in their proper bytes
► 8 select ops to merge the top 7 bits with properly aligned least significant bits

► 8 ands to mask all but lsb’s

► 8 shuffle byte ops to replace lsb’s with “7” or “0”

► 8 xor ops to merge the “7” or “0”

► 32 shuffle byte ops merge updated lower order bytes back into random 
numbers



21 © 2005 IBM Corporation

HPCC Random Number Generation
Original

Rotate Long 1 bit

Shuffle Bytes

Rotate Short 8b

Bit Select

Select XOR value

XOR selector bit

XOR 

Shuffle Bytes



22 © 2005 IBM Corporation

Concluding Remarks

� Cell has characteristics that:
► Can map well to HPC applications

► Support a variety of programming models

► Present significant opportunities and challenges to:

– Programmers, Compilers and Run time systems

� A few enhancements HPC enthusiasts would like some day:
► 64b Mask & Rotate

► 2-way DP PF MADD’s per cycle per SPE

► Main memory expansion capability



23 © 2005 IBM Corporation

Backup



24 © 2005 IBM Corporation

SIMD “IF” Without Branching
� SIMD compare

► 2 input registers, 1 output

► Compare input elements

– On success: Corresponding bits of output register set to 1
– Else: Corresponding bits of output register set to 0

� SIMD bit select
► 3 input registers (A, B, C), 1 output

► Copy bits from A to output if corresponding bits in C are 1, else
Copy bits from B to output if corresponding bits in C are 0

� Example: 16b shorts

for (i=0; i < 8; ++i)
if      ( x[i] == y[i] )  a[i] = b[i]
else                       a[i] = c[i]

� Step 1 - Compare                                            Step 2 - Select

x1 x2 x3 x4 x5 x6 x7x0

y1 y2 y3 y4 y5 y6 y7y0

0 1 1 0 1 0 01

c1 c2 c3 c4 c5 c6 c7c0

b1 b2 b3 b4 b5 b6 b7b0

c1 b2 b3 c4 b5 c6 c7b0

0 1 1 0 1 0 01

Input X

Input Y
Input B

Input

Input C

Output Output A



25 © 2005 IBM Corporation

Instruction Line Buffer

• I-Fetch aligned to 512 bit boundary
•� improves effective bandwidth

• Software Managed Branch Target Buffer (SMBTB) 
• loaded by branch hint instructions



26 © 2005 IBM Corporation

Pipeline Diagram



27 © 2005 IBM Corporation

SPE DMA Unit

•� Data transfer
• Between Main Memory and SPE Local Store
• Full virtual DMA (64b effective PowerPC addresses).
• Data transfer commands 

• put, get, put_list, get_list
• groups of commands associated by tags

•� Synchronization
• Fence: order DMA's within a tag group.
• Barrier: order DMA's within the DMA queue
• Signals: preemption via external agents
• Atomics: cache coherent memory based locks



28 © 2005 IBM Corporation

Channel Interface

•� The interface from SPU core to rest of system
•� Instructions: read, write, read capacity
•� Effects appear at SPU core interface in instruction order
•� Blocking reads & writes stall SPU in low power wait mode
•� Channel Facilities Include:

• DMA control / status 
• Counter-timer 
• Interrupt controller 
• SPE to SPE, PPE to SPE Mailboxes



29 © 2005 IBM Corporation

Desired Characteristics for Efficiency on an SPE

� Loops that can be unrolled deeply
► Ideally, LS accesses that are small powers of 2.

► Can user supply alignment hints to compiler?

� Limited pointer and branch usage
► SPEs are not well-suited to ‘branchy’ code

► Can the user supply effective compile time branch hints?



30 © 2005 IBM Corporation

Desired Characteristics for Efficiency on CELL

� Explicit Data Parallelism
► A data set that can be decomposed into reasonably well balanced parts.

► A computation phase long enough to:

– Amortize the cost of memory latency and synchronization overheads.
– Software pipeline to hide memory latency and synchronization overheads.

� Function Offloading
► Core computations that can be handled by functions that run efficiently on an SPE.

► Enough independent functions to allow for adequate parallelism.

► Function Pipelining

– Balanced pipeline stages (code size and path length)
– Volume of data passed in each stage consistent with size of the SPE LS



31 © 2005 IBM Corporation

DGEMM Comments and Caveats

� Main memory alignment issues
► Preceding analysis ignores poor alignment and transposes

► Most alignment can be hidden behind muladds (on different pipe)

� Assumed no border clean-up code required
► Tile size choice can leave partial tiles at matrix edge

► Border clean-up can be on PX or SPE’s



32 © 2005 IBM Corporation

Cell Die

P
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

M
I
C

R
R
A
C

B
I
C

MIB


